
SM Transparency Catalog ▶ Wells ▶ Architectural Solutions - multiple facilities

Architectural cladding and facade envelope systems

When it comes to making a unique building stand out, Wells brings expertise in all market segments. When partners have visionary ideas, we partner with you to value engineer and design a solution to exceed your schedule requirements and bring your vision to life.

A great finish puts the final touch on any prefabricated project. Whether you need to match an existing building, integrate multiple finishes, mimic the look of traditional brick or stone, or develop a signature look, Wells offers endless architectural cladding solutions. As your building partner, Wells will help guide you through the variety of colors, textures, unique features and custom exterior designs to bring your vision to life.

Performance dashboard

Achieve your design vision with limitless facade options including surface textures, decorative finish options, colors and detailing techniques.

Superior thermal performance to reduce heating and cooling costs.

All-weather installation creating improved schedule and lower costs.

Low maintenance and highly durable, resistant to fire, pests, blasts and harsh weather conditions.

PCI-Certified manufacturing facilities ensure a quality architectural product manufactured under strict regulations.

Visit Wells for more product information:

Architectural Solutions Architectural Cladding

MasterFormat® 03 40 00, 03 45 13, 03 45 33, 03 48 33

Wells Design Handbook, Inspiration Guide, **Building Envelope**

For spec help, contact us or call 303-964-7064

Environment & materials

Improved by:

Our manufacturing facilities create custom and optimized mix designs to reduce the percentage of cement and other ingredients for sustainable prefabrication.

We offer a unitized cladding system, Infinite Facade, that uses 65% less concrete.

Our process manages local inventory and supplier selection.

During our manufacturing process we manage and reclaim water and other raw materials used in the manufacturing process.

Certifications, rating systems & disclosures:

PCI certified erector

PCI certified plants

PCI architectural certification level AA

See LCA, interpretation & rating systems

SM Transparency Report (EPD)™

LCA

VERIFICATION

V

Transparency Report (EPD)

3rd-party verified

3rd-party reviewed

The declaration is intended for use in Business-to-Consumer (B-to-C) communication.

Validity: 20231018 - 20281017 Decl #: WEL-20231018-001

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017 and the NSF PCR, as well as ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundary

North America; Cradle-to-gate **Declared unit:**

1 tonne (1,000 kg) precast concrete

LCIA methodology: TRACI 2.1

LCA software; LCI database

SimaPro Analyst 9.5 ecoinvent v3, Industry data 2.0, NREL, US-EI

LCA conducted by: Sustainable Minds

Wells

210 Inspiration Lane Albany, MN, 56307 800.658.7049

Contact us

1 PERFORMANCE DASHBOARD

Architectural Solutions - multiple facilities

LCA results & interpretation

Life cycle assessment

Sustainable Minds®

ransparency Report (EPD)

Scope and summary

♥ Cradle to gate ○ Cradle to gate with options ○ Cradle to grave

Product description

Wells Architectural Solutions encompasses precast concrete products that are utilized to clad building facades or construct free-standing walls. These products can incorporate structural and architectural characteristics, offering a wide range of customization options, including various colors, textures, features, and custom exterior designs. Important to note, a majority of Wells architectural solutions are prestressed and reinforced to allow our products to provide load bearing structural support, impacting performance results when compared to traditional architectural solutions. This versatility allows for achieving highly durable architectural and structural solutions with customized concrete finishes.

Declared unit The declared unit is one metric tonne (1,000 kg) of precast concrete product.

The results in this report are expressed in terms of potential impacts per 1,000 kg of product from cradle to gate. Lifting/connection hardware are included.

Manufacturing data

Locations: The data covers five Wells manufacturing plants located in Albany, MN; Brighton, CO; Crystal Lake, IL; Valders, WI; and Wells, MN.

Sensitivity analysis Sensitivity analyses were performed to check the robustness of the results where the highest potential environmental impacts are occurring. As the

Reporting period: January 2022 – December 2022

bulk of impacts are attributed to raw materials acquisition and processing,

the mass of specified raw materials was changed by +/-20%. These raw materials were chosen based on a combination of relatively higher contribution to the results. Global warming potential was evaluated for sensitivity since Wells is interested in the potential CO2-equivalent emissions of its products. The range of change in total life cycle impacts was in a +/-6% change.

Embodied carbon The total embodied carbon per one tonne of precast architectural concrete

manufactured across five facilities is 3.45+02 kg CO₂ eq.

MATERIAL

6.40E+01

4.80E+01

3.20E+01

1.60E+01

0.00E+00

Material composition greater than 1% by weight

Cement	10-20%
Aggregate	60-90%
Steel reinforcement	1-20%
Chemical admixture	<1%
Others	1-10%
Total impacts by life cycle stage [mPts/decl unit]	
8.00E+01 LIFE CYCLE STAGE	MPTS/DECL. UNIT

Transportation

Manufacturing

Raw material acquisition

LCA results

LIFE CYCLE STAGE

Information modules:

Included (X) | Excluded (MND)* *Modules A4, A5, B, C, and D are excluded.

SM Single Score Learn about SM Single Score results 7.00E+01 mPts Energy used for raw material

extraction (electricity and fuels).

A1 RAW MATERIAL SUPPLY

PRODUCTION STAGE

(X) A1 Raw material supply

1.81E+01 mPts Truck and trailer transportation (fuel consumption).

A2 TRANSPORT

3.19E-02

3.95E-06

8.78E-03

PRODUCTION STAGE

(X) A2 Transport

All life cycle stages

What's causing the greatest impacts

Activities during the supply of raw materials (A1) are responsible for much of the impacts in each impact category. The next highest impact contributor is manufacturing (A3) in most of the impact categories. Transportation (A2) accounts for a notable impact only in the ozone depletion and fossil fuel depletion impact categories.

This stage dominated the results for all impact categories. The raw

Raw materials acquisition and transportation

materials acquisition and transportation stage includes raw material extraction and upstream processing, and it accounts for about 75% of the impact of global warming and more than half of the impacts for all other impact categories. This sub-category PCR recognizes fly ash, silica fume, and granulated blast furnace slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a precast concrete material input. **Transportation**

product life cycle impacts. Average transportation distances and modes of transport were modeled for the transportation of raw materials to each production facility. Most of the ingredients are transported via truck and trailer within the US and were assumed to come directly from the supplier. Manufacturing

Manufacturing is the second highest contributor to most impact

Transportation of raw materials is a relatively small contributor to all

% WT.

7.00E+01

1.81E+00

2.12E+00

categories due to the energy required from each facility. Once materials are delivered to the facilities, the forms are set, then reinforcing steel rebar, inserts, anchors, etc. are tied in. After the forms are built, concrete is batched, loaded into delivery vehicles, and poured into the form. The concrete is manually adjusted to meet the necessary thickness and then when necessary, vibrated to ensure proper consolidation. When specified, insulation is laid directly on top of the concrete that has been previously poured into the form, and wythe connectors are inserted through the insulation. If strength requirements are met, the prestressed strand is cut, and individual prestress/precast components are stripped from the form, cleaned off, loaded onto a trailer, and sent out to the finishing area. How we're making it greener

to partially replace the cement content in standard concrete mixes -

ultimately improving the concrete's properties and reducing greenhouse gas emissions. To ensure we are utilizing the most environmentally friendly materials, Wells works in conjunction with our industry partners by conducting research and development to maximize their usage. With an eye to operations, Wells recently replaced existing batch plant equipment with more energy efficient options to improve raw material utilization and minimize waste. See how we make it greener

Our production facilities improve our concrete mix through the use of

supplementary cementitious materials (SCMs), such as fly ash and slag,

Impacts per one tonne of precast concrete

kg SO₂ eq


CTU_h

Materials or processes contributing >20% to

total impacts in each life cycle stage

LIFE CYCLE STAGE

Acidification

for precast concrete production.

A3 MANUFACTURING

2.65E-01

9.24E-07

2.24E-02

PRODUCTION STAGE

(X) A3 Manufacturing

Ecological damage Unit Impact category

6.31E-01

2.06E-05

1.37E-01

See the additional content required by the NSF PCR for precast concrete on page 4 of the **Transparency Report PDF**.

TRACI v2.1 results per declared unit (Architectural Solutions - multiple facilities)

Impact category Unit	it				
Human health damage					
Ozone depletion kg	CFC-11 eq	5.07E-06	6.89E-07	3.61E-07	
Global warming kg	CO ₂ eq	2.62E+02	2.98E+01	5.36E+01	
Eutrophication kg	N eq	1.02E-01	3.81E-03	1.15E-02	

Respiratory effects kg PM_{2.5} eq

Non-carcinogenics

Smog	kg O ₃ eq	1.14E+01	5.28E-01	5.45E+00
Additional environmental information				
Impact category Unit				
Fossil fuel depletion	MJ surplus	1.70E+02	6.13E+01	9.60E+01
Ecotoxicity	CTU _e	4.52E+02	8.05E+01	9.14E+00

PCRs

References

ISO 21930:2017, "Sustainability in Building Construction — Environmental Declaration of Building Products" serves as the core PCR

LCA Background Report

US-EI 2.2 databases; TRACI 2.1

NSF PCR for Precast Concrete v3.0 serves as the subcategory PCR Valid through Apr 30, 2026. PCR review conducted by Thomas P. Gloria (Industrial Ecology Consultants), Ph. D; Bill Stough (Bill Stough, LLC); Dr. Michael Overcash (Environmental Clarity).

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and

Wells Architectural and Structural Precast Concrete LCA Background Report,

Wells 2023; SimaPro Analyst 9.5; ecoinvent v3, Industry data 2.0, NREL, and

Download PDF SM Transparency Report, which includes the additional EPD content required by the NSF PCR. SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that

may not be comparable. In order to support comparative assertions, this EPD meets all

enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. Environmental declarations from different programs (using different PCR)

comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers, as the EPD results may

VERIFICATION

3rd-party reviewed

3rd-party verified

services"

not be entirely comparable. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines, use the same sub-category PCR where applicable, include all relevant information modules, be limited to EPDs applying a functional unit, and be based on equivalent

scenarios with respect to the context of construction works. Some LCA impact categories and inventory items are still under development and can have high levels of uncertainty. To promote uniform guidance on the data collection, calculation, and reporting of results, the ACLCA methodology (ACLCA 2019) was used.

SM Transparency Report (EPD)™

LCA

Environmental product declarations Industry-wide (generic) EPD

✓ Product-specific Type III EPD

▼ Third-party certified type III EPD

Rating systems

performance.

✓ Product-specific Type III EPD 1 product LEED BD+C: New Construction | v4.1 - LEED v4.1 Building product disclosure and optimization

½product

1 product

1.5 product

2 points

.5 points

.75 points

1 point

The intent is to reward project teams for selecting products from

manufacturers who have verified improved life-cycle environmental

Environmental product declarations Industry-wide (generic) EPD

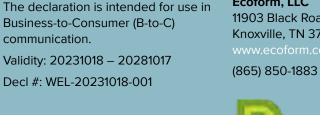
LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Collaborative for High Performance Schools National Criteria **MW 7.1 – Environmental Product Declarations**

Green Globes for New Construction and Sustainable Interiors Materials and resources NC 3-5-1-2 Path B: Prescriptive Path for Building Core and Shell

BREEAM New Construction 2018 Mat 02 - Environmental impacts from construction products


NC 3-5-2-2 and SI 4-1-2 Path B: Prescriptive Path for Interior Fit-outs

✓ Multi-product specific EPD Product-specific EPD

Environmental Product Declarations (EPD)

() Industry-average EPD

SUMMARY Wells Reference PCR

Transparency Report (EPD)

well as ISO 14025:2006, by Jack Geibig, President, Ecoform. Ecoform, LLC

© 2023 | The SM Transparency Report [EPD]™ Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

This environmental product

verified, according to ISO

declaration (EPD) was externally

21930:2017 and the NSF PCR, as

11903 Black Road, Knoxville, TN 37932 **Declared unit:**

SimaPro Analyst 9.5

Regions; system boundary North America; Cradle-to-gate

1 tonne (1,000 kg) precast concrete LCIA methodology: TRACI 2.1 LCA software; LCI database

LCA conducted by: Sustainable Minds **Public LCA:**

ecoinvent v3, Industry data 2.0, NREL, US-EI

210 Inspiration Lane Albany, MN, 56307 800.658.7049

Contact us

SM Transparency Catalog ► Wells ► Architectural Solutions - multiple facilities

How we make it greener

Architectural Solutions - multiple facilities

See LCA results by life cycle stage

Collapse all

RAW MATERIALS ACQUISITION

The efforts to make concrete more sustainable involve replacing a portion of cement with alternatives like fly ash and slag, and crushing and recycling waste concrete as aggregate. Sustainability in concrete products lies in its constituent materials - concrete doesn't use scarce resources, it's cost-effective, and it's easy to work with. Concrete is made up of naturally occurring ingredients like Portland cement, which is a blend of limestone, silica, and various chemicals. The aggregates in concrete come from naturally occurring local gravel, sand or crushed rock, and they can also be sourced from recycled materials such as old concrete or glass.

TRANSPORTATION

Wells building solutions focus on a localized production strategy, sourcing local ingredients and raw materials from nearby suppliers, reducing transportation costs as well as environmental impact. This local sourcing results in a significant reduction in the number of vehicles driving across long distances to deliver construction materials. This contributes to several sustainability benefits, including reduced carbon footprint, energy conservation, supporting the local economy, and faster delivery and construction. When shipping our building solutions to construction sites, there is negligible packaging, as well as the use of reusable load securement systems combined with just-intime (JIT) delivery with immediate installation, reducing waste and excess on-site storage.

MANUFACTURING

Our prefabrication manufacturing process is grounded in utilizing precise mixture proportions, reducing waste by limiting concrete excess. Wells prefabricated building solutions are manufactured in a controlled environment. Our preconstruction process includes advanced engineering coordination to determine panel sizes to determine the most efficient building layout and reduce waste.

OTHER (USE, END OF LIFE)

The durability and extended life of prefabricated building systems creates buildings that stand the test of time. Additionally, when the building reaches the end of its life cycle, material can be diverted from the landfill and repurposed for other applications, contributing to a more sustainable approach to construction. The thermal mass of prefabricated concrete with insulation supports energy conservation by absorbing and releasing heat slowly, leading to long-term energy savings in our buildings.

SM Transparency Report (EPD)™

VERIFICATION LCA

Transparency Report (EPD)

3rd-party verified

3rd-party reviewed

The declaration is intended for use in Business-to-Consumer (B-to-C) communication.

Validity: 20231018 - 20281017 Decl #: WEL-20231018-001

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017 and the NSF PCR, as well as ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundary

North America; Cradle-to-gate

Declared unit: 1 tonne (1,000 kg) precast concrete

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Analyst 9.5 ecoinvent v3, Industry data 2.0, NREL, US-EI

LCA conducted by: Sustainable Minds

Wells

210 Inspiration Lane Albany, MN, 56307

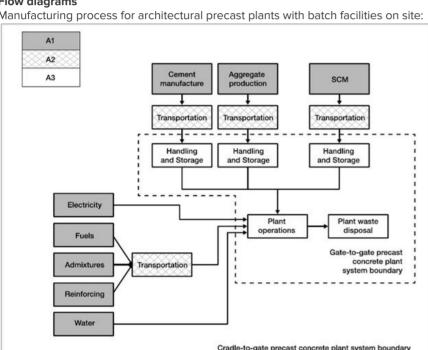
800.658.7049

Contact us

Additional EPD content required by:

NSF PCR: Precast Concrete

Data


Background This declaration of an average product was created by collecting life cycle data for Wells architectural precast concrete products from several locations to calculate the weighted average for a declared unit of one tonne (1,000 kg) of product including lifting or connecting hardware. Variation in the unit process data for structural precast concrete production was very small. Data adopted in the model include ecoinvent v3, Industry data 2.0, NREL, and US-EI 2.2 databases.

Allocation The manufacturing inputs that needed allocation were electricity, water, and fuel consumption since there are only one electric meter and one water meter that include the production of multiple Wells concrete products. The allocation of electricity, water, and fuel consumption were based on the percent of production by mass for the individual product divided by total site production output. In addition, there is no co-product in the manufacturing process.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. The only exceptions to these criteria are substances with hazardous and toxic properties, which must be listed even when the given process unit is under the cut-off criterion of 1% of the total mass. Fly ash is used as a supplementary cementitious material and is regulated under RCRA & the Clean Water Act; no other hazardous substances are present. No known flows are deliberately excluded from this declaration; therefore, these criteria have been met. No biogenic carbon enters the product system. Carbon emissions during carbonation and calcination are also considered in this study. While no carbonation occurs during production of precast concrete, calcination occurs due to the use of cement. Calcination CO2 emissions for cement are calculated and reported separately using a carbon intensity factor for cement.

Quality Temporal and technological representativeness are considered to be high. Geographical representativeness is considered to be good. All relevant process steps for the product system were considered and modeled. The process chain is considered sufficiently complete with regards to the goal and scope of this study. The product system was checked for mass balance and completeness of the inventory. Capital equipment was excluded. Otherwise, no data were knowingly omitted. For more information on data quality, see the LCA background report.

Manufacturing process for architectural precast plants with batch facilities on site:

Major assumptions and limitations: • Material input and transportation distances are averages and do not reflect

- changes in material efficiency and supplier locations. • Proxy materials were used when matching secondary data sets were not found.
- Generic data sets used for material inputs, transport, and waste processing are considered good quality, but actual impacts from material suppliers, transport carriers, and local waste processing may vary.
- LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.
- This EPD covers only the cradle-to-gate impacts of products using a declared unit. Results listed in this EPD cannot be used to compare between products.
- For an average EPD for a declared unit of 1 tonne of precast concrete, the representativeness of the average EPD could be described by relevant technical properties such as the architectural tolerances required by each PCI category.

Major system boundary exclusions:

- Capital goods & infrastructure; maintenance and operation of support equipment; • Manufacture & transport of packaging materials not associated with final product;
- Human labor and employee transport;
- Building operational energy and water use not associated with final product.

Secondary data sets used

Secondary data sets used		
DATA SET	SOURCE	REF YEAR
eGRID – MRO, WECC, RFC Cement, Portland {US} cement production, Portland	US EPA	2019
Cut-off, U	ecoinvent v3	2022
Cement, CEM II/A-L {ZA} cement production, CEM II/A-L Cut-off, U	ecoinvent v3	2022
Sand (RoW) sand quarry operation, extraction from river bed Cut-off, U	ecoinvent v3	2017
Gravel, crushed {RoW} gravel production, crushed Cut-off, U	ecoinvent v3	2018
Rosin size, for paper production (RoW) rosin size production, for paper production Cut-off, U	ecoinvent v3	2018
Plasticiser, for concrete, based on sulfonated melamine formaldehyde (GLO) plasticiser production, for concrete, based on sulfonated melamine formaldehyde Cut-off, U	ecoinvent v3	2015
Calcium nitrate {RoW} calcium nitrate production Cut-off, U	ecoinvent v3	2020
Polyethylene, high density, granulate {RoW} polyethylene production, high density, granulate Cut-off, U	ecoinvent v3	2018
Printing ink, rotogravure, without solvent, in 55% toluene solution state {RoW} printing ink production, rotogravure, product in 55% toluene solution state Cut-off, U	ecoinvent v3	2012
Steel, low-alloyed {RoW} steel production, electric, low-alloyed Cut-off, U	ecoinvent v3	2021
Steel, unalloyed {RoW} steel production, converter, unalloyed Cut-off, U	ecoinvent v3	2020
Metal working machine, unspecified (RoW) metal working machine production, unspecified Cut-off, U	ecoinvent v3	2013
Steel wire rod (GLO) blast furnace route and electric arc furnace route production mix, at plant 1kg LCI result	Industry data 2.0	2021
Carbon fiber/US	US-EI 2.2	2013
C3 hydrocarbon mixture {Europe without Switzerland} C3 hydrocarbon production, mixture, petroleum refinery operation Cut-off, U	ecoinvent v3	2019
Reinforcing steel {RoW} reinforcing steel production Cut-off, U	ecoinvent v3	2020
Concrete, 40MPa {RoW} concrete production, 40MPa, for civil engineering, with cement, Portland Cut-off, U	ecoinvent v3	2022
Steel, chromium steel 18/8, hot rolled (RoW) steel production, chromium steel 18/8, hot rolled Cut-off, U	ecoinvent v3	2021
Shale brick {RoW}l shale brick production Cut-off, U	ecoinvent v3	2014
Polystyrene foam slab (RoW) polystyrene foam slab production Cut-off, U	ecoinvent v3	2022
Methylene diphenyl diisocyanate {RoW} market for methylene diphenyl diisocyanate Cut-off, U	ecoinvent v3	2022
Polyol (RoW) market for polyol Cut-off, U	ecoinvent v3	2022
Pentane (RoW)I pentane production Cut-off, U	ecoinvent v3	2018
Acrylonitrile-butadiene-styrene copolymer {RoW} acrylonitrile-butadiene-styrene copolymer production Cut-off, U	ecoinvent v3	2022
Hydrochloric acid, without water, in 30% solution state $\{US\}$ zirconium and hafnium tetrachloride production, from zircon Cut-off, U	ecoinvent v3	2022
Polypropylene, granulate {RoW} polypropylene production, granulate Cut-off, U	ecoinvent v3	2018
Injection moulding {RoW}l injection moulding Cut-off, U	ecoinvent v3	2020
Polystyrene foam slab with graphite, 6% recycled {CH} polystyrene foam slab with graphite, 6% recycled Cut-off, U	ecoinvent v3	2016
Argon, crude, liquid {CA-QC} air separation, cryogenic Cut-off, U	ecoinvent v3	2020
Welding, gas, steel {RoW} welding, gas, steel Cut-off, U	ecoinvent v3	2022
Carbon dioxide, liquid (RoW) carbon dioxide production, liquid Cut-off, U	ecoinvent v3	2022
Diesel, burned in building machine {GLO} diesel, burned in building machine Cut-off, U	ecoinvent v3	2022
Gasoline, combusted in equipment NREL/US U	NREL	2008
Heat, district or industrial, other than natural gas {CA-QC} heat production, propane, at industrial furnace >100kW Cut-off, U	ecoinvent v3	2013
Nitrogen, liquid (RoW) air separation, cryogenic Cut-off, U	ecoinvent v3	2022
Oxygen, liquid {CA-QC} air separation, cryogenic Cut-off, U	ecoinvent v3	2022

ecoinvent v3

2022

Wells Architectural Solutions (multiple facilities)

Wells Architectural Solutions (multiple facilities): LCIA results, resource use, output and waste flows, and carbon

Heat, district or industrial, natural gas {CA-QC}| heat

>100kW | Cut-off, U

production, natural gas, at industrial furnace low-NOx

0

0

0

0

0

Parameter	Unit	A1	A2	A3	Total
LCIA results (per 1,000 kg)					
Ozone depletion	kg CFC-11 eq	5.07E-06	6.89E-07	3.61E-07	6.12E-06
Global warming	kg CO ₂ eq	2.62E+02	2.98E+01	5.36E+01	3.45E+02
Smog	kg O ₃ eq	1.14E+01	5.28E-01	5.45E+00	1.74E+01
Acidification	kg SO ₂ eq	6.31E-01	3.19E-02	2.65E-01	9.28E-01
Eutrophication	kg N eq	1.02E-01	3.81E-03	1.15E-02	1.17E-01
Respiratory effects	kg PM _{2.5} eq	3.11E-05	1.74E-08	6.52E-08	3.12E-05
Carcinogenics	CTUh	2.06E-05	3.95E-06	9.24E-07	2.55E-05
Non-carcinogenics	CTUh	1.37E-01	8.78E-03	2.24E-02	1.68E-01
Additional environmental information					
Ecotoxicity	CTUe	4.52E+02	8.05E+01	9.14E+00	5.42E+02
Fossil fuel depletion	MJ surplus	1.70E+02	6.13E+01	9.60E+01	3.27E+02
Resource use indicators					
Renewable primary energy used as energy carrier (fuel)	MJ, NCV	6.15E+01	9.15E-01	2.38E+01	8.62E+01
Renewable primary resources with energy content used as material	MJ, NCV	4.51E+01	1.42E-01	2.22E-01	4.55E+01
Total use of renewable primary resources with energy content	MJ, NCV	1.07E+02	1.06E+00	2.40E+01	1.32E+02
Non-renewable primary resources used as an energy carrier (fuel)	MJ, NCV	2.04E+03	4.28E+02	8.24E+02	3.29E+03
Non-renewable primary resources with energy content used as naterial	MJ, NCV	2.59E+00	4.39E-05	6.04E-04	2.59E+00
otal use of non-renewable primary resources with energy content	MJ, NCV	2.04E+03	4.28E+02	8.24E+02	3.29E+03
Secondary materials	kg	0	0	0	0
Renewable secondary fuels	MJ, NCV	0	0	0	0
Non-renewable secondary fuels	MJ, NCV	0	0	0	0
Recovered energy	MJ, NCV	0	0	0	0
Jse of net fresh water resources	m ³	2.57E+01	1.48E+00	1.27E+00	2.84E+01
Abiotic depletion potential for fossil resources (ADPfossil)	MJ, NCV	1.79E+03	4.00E+02	7.56E+02	2.95E+03
Output flows and waste category indicators					
lazardous waste disposed	kg	0	0	0	0
Non-hazardous waste disposed	kg	0	0	3.58E+01	3.58E+01
High-level radioactive waste, conditioned, to final repository	kg	3.33E-02	6.43E-04	1.05E-02	4.44E-02
ntermediate- and low-level radioactive waste, conditioned, to final epository	kg	4.72E-05	5.65E-07	5.72E-07	4.83E-05
Components for re-use	kg	0	0	0	0
Materials for recycling	kg	0	0	2.49E+00	2.49E+00
Materials for energy recovery	kg	0	0	0	0
exported energy	MJ, NCV	0	0	0	0
Carbon emissions and removals	1	1	1		
liogenic carbon removal from product	kg CO ₂	0	0	0	0
Biogenic carbon emission from product	kg CO ₂	0	0	0	0
Biogenic carbon removal from packaging	kg CO ₂	0	0	0	0
Biogenic carbon emission from packaging	kg CO ₂	0	0	0	0
Biogenic carbon emission from combustion of waste from renewable sources used in production processes	_	0	0	0	0
Calcination carbon emissions	kg CO ₂	8.10E+01	0	0	8.10E+01
	ng CC ₂		*	-	

kg CO₂

kg CO₂

0

Carbonation carbon removals

Carbon emissions from combustion of waste from non-renewable sources used in production processes