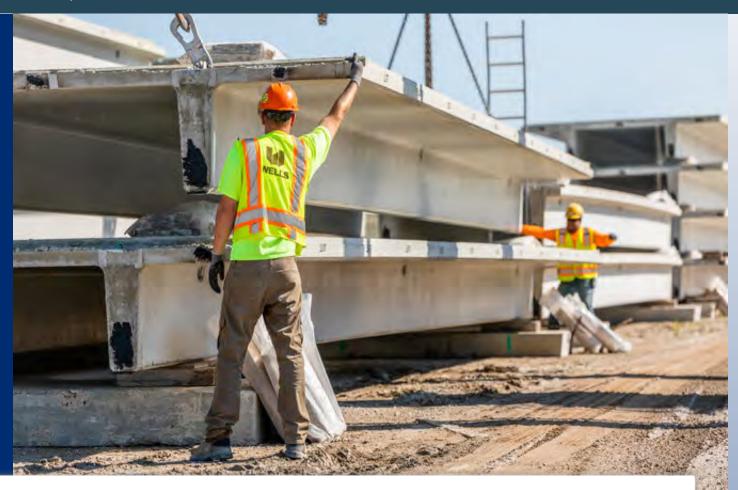


SM Transparency Catalog ▶ Wells ▶ Structural Systems - multiple facilities



Prefabricated Structural Systems

Insulated & Solid Wall Panels, Hollowcore, Columns & Beams, Double Tees, Stairs & **Stadium Risers, Spandrels**

When it comes to making a building, infrastructure project or parking structure that stands out in the community, Wells Structural Systems provide numerous options to support any building type. There are many inherent environmental qualities of precast concrete that make it an excellent choice as it is low maintenance, mold resistant and noncombustible. No matter the project type, Wells' structural building solutions create durable, strong, resilient structures that continue to outperform expectations.

Performance dashboard

Features & functionality

All-weather installation creating improved schedule and lower costs.

Low maintenance and sound transmission, fire and environmental protection.

Energy efficient resulting in lower heating and cooling costs.

PCI-Certified manufacturing facilities ensure a quality product manufactured under strict regulations.

Manufactured in an indoor, climate-controlled environment allowing year-round production.

Visit Wells for more product information:

Structural Systems

Environment & materials

Improved by:

Our manufacturing facilities create custom and optimized mix designs to reduce the percentage of cement and other ingredients for sustainable prefabrication.

Our process manages local inventory and supplier

During our manufacturing process we manage and reclaim water and other raw materials used in the manufacturing process.

Certifications, rating systems & disclosures:

PCI certified erector

PCI certified plants

PCI architectural certification level AA

MasterFormat® 03 40, 03 41 00, 03 41 10, 03 41 13, 03 41 16, 03 41 23, 03 41 33, 03 48 33

Wells Design Handbook

For spec help, contact us or call 303-964-7064

See LCA, interpretation & rating systems

SM Transparency Report (EPD)™

VERIFICATION

LCA

3rd-party reviewed

Transparency Report (EPD)

3rd-party verified

The declaration is intended for use in Business-to-Consumer (B-to-C) communication.

Validity: 20231018 - 20281017 Decl #: WEL-20231018-003

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017 and the NSF PCR, as well as ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundary North America; Cradle-to-gate

Declared unit:

1 tonne (1,000 kg) precast concrete

LCIA methodology: TRACI 2.1

LCA software; LCI database

SimaPro Analyst 9.5 ecoinvent v3, Industry data 2.0, NREL, US-EI

LCA conducted by: Sustainable Minds

Public LCA:

Wells

210 Inspiration Lane Albany, MN, 56307

800.658.7049

Contact us

SM Transparency Catalog ▶ Wells ▶ Structural Systems - multiple facilities

LCA results & interpretation

Scope and summary

Life cycle assessment

Product description

Wells Structural Systems encompasses precast concrete building solutions which serve as the framework to structural building requirements, such as insulated and solid wall panels, columns, beams, double tees, and prefabricated concrete stairs.

♥ Cradle to gate ○ Cradle to gate with options ○ Cradle to grave

Declared unit The declared unit is one metric tonne (1,000 kg) of precast concrete product.

The results in this report are expressed in terms of potential impacts per 1,000 kg of product from cradle to gate. Lifting/connection hardware are included.

Locations: The data covers five Wells manufacturing plants located in

Manufacturing data Reporting period: January 2022 – December 2022

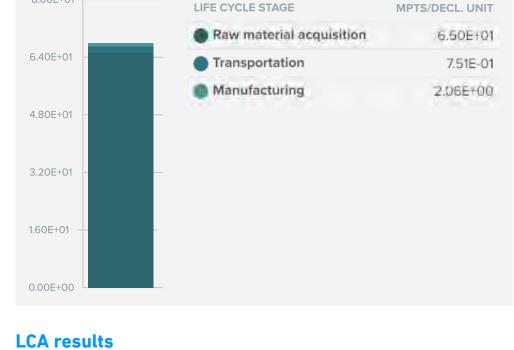
Brighton, CO; Crystal Lake, IL; Rosemount, MN; Valders, WI; and Wells, MN. Sensitivity analysis

Sensitivity analyses were performed to check the robustness of the results

where the highest potential environmental impacts are occurring. As the bulk of impacts are attributed to raw materials acquisition and processing, the mass of specified raw materials was changed by +/-20%. These raw materials were chosen based on a combination of relatively higher contribution to the results.

range of change in total life cycle impacts was in a +/-9% change. **Embodied carbon**

interested in the potential CO2-equivalent emissions of its products. The


Global warming potential was evaluated for sensitivity since Wells is

The total embodied carbon per one tonne of precast structural concrete manufactured across five facilities is 2.94+02 kg CO₂ eq per declared unit.

Material composition greater than 1% by weight

Total impacts by life cycle stage [mPts/decl unit]

MATERIAL	% WT.
Cement	10-20%
Aggregate	70-90%
Steel reinforcement	1-20%
Chemical admixture	<1%
Others	1-10%

excluded.

What's causing the greatest impacts

All life cycle stages

Activities during the supply of raw materials (A1) are responsible for much of the impacts in each impact category. The next highest impact contributor is manufacturing (A3) in most of the impact categories. Transportation (A2) accounts for a notable impact only in the ozone depletion and fossil fuel depletion impact categories.

This stage dominated the results for all impact categories. The raw

Raw materials acquisition and transportation

materials acquisition and transportation stage includes raw material extraction and upstream processing, and it accounts for about 80% of the impact of global warming and more than half of the impacts for all other impact categories. This sub-category PCR recognizes fly ash, silica fume, and granulated blast furnace slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a precast concrete material input.

product life cycle impacts. Average transportation distances and modes of transport were modeled for the transportation of raw materials to each production facility. Most of the ingredients are transported via truck and trailer within the US and were assumed to come directly from the supplier. Manufacturing

Transportation of raw materials is a relatively small contributor to all

Manufacturing is the second highest contributor to most impact

Transportation

categories due to the energy required from each facility. Once materials are delivered to the facilities, the forms are set, then reinforcing steel rebar, inserts, anchors, etc. are tied in. After the forms are built, concrete is batched, loaded into delivery vehicles, and poured into the form. The concrete is manually adjusted to meet the necessary thickness and then when necessary, vibrated to ensure proper consolidation. When specified, insulation is laid directly on top of the concrete that has been previously poured into the form, and wythe connectors are inserted through the insulation. If strength requirements are met, the prestressed strand is cut, and individual prestress/precast components are stripped from the form, cleaned off, loaded onto a trailer, and sent out to the finishing area.

Wells manufacturing facilities continually evolve and test concrete mix designs to ensure optimal sustainable prefabricated products to

How we're making it greener

reduce the amount of embodied carbon. During the manufacturing process, we reclaim and recycle water while sourcing local raw materials and production inputs to minimize our environmental impact. Wells building solutions are prefabricated to the exact building specifications reducing construction waste and environmental impact at the jobsite. See how we make it greener

LIFE CYCLE STAGE

8.00E+01

Included (X) Excluded (MND)*
*Modules A4, A5, B, C, and D are

Information modules:

(X) A1 Raw material supply

PRODUCTION STAGE

Truck and trailer transportation

PRODUCTION STAGE

(X) A2 Transport

7.51E-01 mPts

Energy and electricity consumed

PRODUCTION STAGE

2.06E+00 mPts

7.25E-08

8.58E+01

1.78E+01

(X) A3 Manufacturing

6.50E+01 mPts Impacts per one tonne of precast concrete Materials or processes contributing >20% to Energy used for raw material

Unit

MJ surplus

SM Single Score Learn about SM Single Score results

total impacts in each life cycle stage	extraction (electricity and fuels).	(fuel consumption).	for precast concrete production.			
TRACI v2.1 results per declared unit (Structural Systems - multiple facilities)						
LIFE CYCLE STAGE	A1 RAW MATERIAL SUPPLY	A2 TRANSPORT	A3 MANUFACTURING			

Ecological damage

2.93E-05

1.12E+02

3.81E+02

Impact category	Unit				
Acidification	kg SO ₂ eq	2	5.61E-01	1.32E-02	2.35E-01
Eutrophication	kg N eq	?	8.53E-02	1.58E-03	1.21E-02
Global warming	kg CO ₂ eq	?	2.34E+02	1.24E+01	4.77E+01
Ozone depletion	kg CFC-11 eq	•	2.10E-06	2.85E-07	4.21E-07

Carcinogenics CTU_h

Fossil fuel depletion

Impact category

Human health damage

Impact category	Unit				
Additional environn	nental informat	ion			
Smog	kg O ₃ eq	2	1.02E+01	2.18E-01	5.28E+00
Respiratory effects	kg PM _{2.5} eq	?	1.33E-01	3.63E-03	2.43E-02
Non-carcinogenics	CTU _h	0	1.97E-05	1.63E-06	1.35E-06

7.19E-09

2.54E+01

3.32E+01

CTU **Ecotoxicity**

References	Deting evetoms
oce the dualitional content required by the rior rior predact condition on page	
See the additional content required by the NSF PCR for precast concrete on page	4 of the Transparency Penort PDF

US-EI 2.2 databases; TRACI 2.1

PCRs

Michael Overcash (Environmental Clarity).

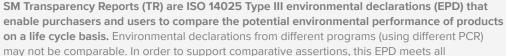
content required by the NSF PCR.

LCA Background Report

ISO 21930:2017, "Sustainability in Building Construction — Environmental Declaration of Building Products" serves as the core PCR NSF PCR for Precast Concrete v3.0 serves as the subcategory PCR

Valid through Apr 30, 2026. PCR review conducted by Thomas P. Gloria

(Industrial Ecology Consultants), Ph. D; Bill Stough (Bill Stough, LLC); Dr.


Wells Architectural and Structural Precast Concrete LCA Background Report,

Wells 2023; SimaPro Analyst 9.5; ecoinvent v3, Industry data 2.0, NREL, and

rules for environmental product declarations of construction products and services"

Download PDF SM Transparency Report, which includes the additional EPD

ISO 14025, "Sustainability in buildings and civil engineering works -- Core

may not be comparable. In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution

should be exercised when evaluating EPDs from different manufacturers, as the EPD results may

not be entirely comparable. Any EPD comparison must be carried out at the building level per ISO

21930 guidelines, use the same sub-category PCR where applicable, include all relevant information modules, be limited to EPDs applying a functional unit, and be based on equivalent scenarios with respect to the context of construction works. Some LCA impact categories and inventory items are still under development and can have high levels of uncertainty. To promote uniform guidance on the data collection, calculation, and reporting of results, the ACLCA methodology (ACLCA 2019) was used.

LEED BD+C: New Construction | v4 - LEED v4 Building product disclosure and optimization

performance.

Rating systems

Environmental product declarations Industry-wide (generic) EPD ½product ✓ Product-specific Type III EPD 1 product

The intent is to reward project teams for selecting products from

manufacturers who have verified improved life-cycle environmental

LEED BD+C: New Construction | v4.1 - LEED v4.1 Building product disclosure and optimization **Environmental product declarations**

MW 7.1 – Environmental Product Declarations

Industry-wide (generic) EPD 1 product ✓ Product-specific Type III EPD 1.5 product

▼ Third-party certified type III EPD 2 points

Collaborative for High Performance Schools National Criteria

Green Globes for New Construction and Sustainable Interiors Materials and resources

BREEAM New Construction 2018 Mat 02 - Environmental impacts from construction products

NC 3-5-2-2 and SI 4-1-2 Path B: Prescriptive Path for Interior Fit-outs

✓ NC 3-5-1-2 Path B: Prescriptive Path for Building Core and Shell

Environmental Product Declarations (EPD) Industry-average EPD

Product-specific EPD

3rd-party reviewed verified, according to ISO Transparency Report (EPD) 3rd-party verified

SM Transparency Report (EPD)™

LCA

Ø

Business-to-Consumer (B-to-C) communication. Validity: 20231018 – 20281017 Decl #: WEL-20231018-003

The declaration is intended for use in

VERIFICATION

21930:2017 and the NSF PCR, as well as ISO 14025:2006, by Jack Geibig, President, Ecoform. **Ecoform, LLC** 11903 Black Road,

This environmental product

declaration (EPD) was externally

Knoxville, TN 37932 (865) 850-1883

© 2023 | The SM Transparency Report [EPD]™ Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

SUMMARY

Reference PCR

Regions; system boundary North America; Cradle-to-gate

✓ Multi-product specific EPD

Declared unit: 1 tonne (1,000 kg) precast concrete LCIA methodology: TRACI 2.1

LCA software; LCI database

SimaPro Analyst 9.5 ecoinvent v3, Industry data 2.0, NREL, US-EI

LCA conducted by: Sustainable Minds

800.658.7049 Contact us

210 Inspiration Lane

Albany, MN, 56307

.5 points

.75 points

Wells

SM Transparency Catalog ▶ Wells ▶ Structural Systems - multiple facilities

How we make it greener

Structural Systems - multiple facilities

See LCA results by life cycle stage

Collapse all

RAW MATERIALS ACQUISITION

The efforts to make concrete more sustainable involve replacing a portion of cement with alternatives like fly ash and slag, and crushing and recycling waste concrete as aggregate. Sustainability in concrete products lies in its constituent materials - concrete doesn't use scarce resources, it's cost-effective, and it's easy to work with. Concrete is made up of naturally occurring ingredients like Portland cement, which is a blend of limestone, silica, and various chemicals. The aggregates in concrete come from naturally occurring local gravel, sand or crushed rock, and they can also be sourced from recycled materials such as old concrete or glass.

TRANSPORTATION

Wells building solutions focus on a localized production strategy, sourcing local ingredients and raw materials from nearby suppliers, reducing transportation costs as well as environmental impact. This local sourcing results in a significant reduction in the number of vehicles driving across long distances to deliver construction materials. This contributes to several sustainability benefits, including reduced carbon footprint, energy conservation, supporting the local economy, and faster delivery and construction. When shipping our building solutions to construction sites, there is negligible packaging, as well as the use of reusable load securement systems combined with just-intime (JIT) delivery with immediate installation, reducing waste and excess on-site storage.

MANUFACTURING

Our prefabrication manufacturing process is grounded in utilizing precise mixture proportions, reducing waste by limiting concrete excess. Wells prefabricated building solutions are manufactured in a controlled environment. Our preconstruction process includes advanced engineering coordination to determine panel sizes to determine the most efficient building layout and reduce waste.

OTHER (USE, END OF LIFE)

The durability and extended life of prefabricated building systems creates buildings that stand the test of time. Additionally, when the building reaches the end of its life cycle, material can be diverted from the landfill and repurposed for other applications, contributing to a more sustainable approach to construction. The thermal mass of prefabricated concrete with insulation supports energy conservation by absorbing and releasing heat slowly, leading to long-term energy savings in our buildings.

SM Transparency Report (EPD)™

VERIFICATION LCA

Transparency Report (EPD)

3rd-party verified

3rd-party reviewed

The declaration is intended for use in Business-to-Consumer (B-to-C) communication.

Validity: 20231018 - 20281017 Decl #: WEL-20231018-003

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017 and the NSF PCR, as well as ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundary North America; Cradle-to-gate

Declared unit: 1 tonne (1,000 kg) precast concrete

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Analyst 9.5 ecoinvent v3, Industry data 2.0, NREL, US-EI

LCA conducted by: Sustainable Minds **Public LCA:**

Wells

210 Inspiration Lane Albany, MN, 56307

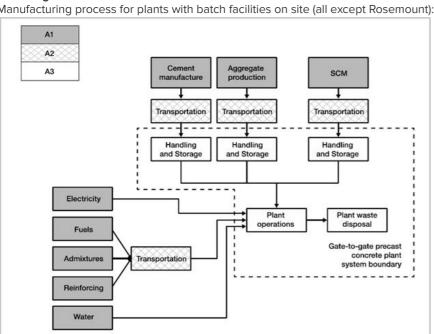
800.658.7049

Contact us

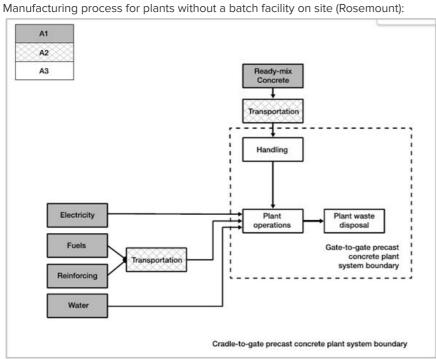
Additional EPD content required by: **NSF PCR: Precast Concrete**

Data

Background This declaration of an average product was created by collecting life cycle data for Wells structural precast concrete products from several locations to calculate the weighted average for a declared unit of one tonne (1,000 kg) of product including lifting or connecting hardware. Variation in the unit process data for structural precast concrete production was very small. Data adopted in the model include ecoinvent v3, Industry data 2.0, NREL, and US-EI 2.2 database.


Allocation The manufacturing inputs that needed allocation were electricity, water, and fuel consumption since there are only one electric meter and one water meter that include the production of multiple Wells concrete products. The allocation of electricity, water, and fuel consumption were based on the percent of production by mass for the individual product divided by total site production output. In addition, there is no co-product in the manufacturing process.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. The only exceptions to these criteria are substances with hazardous and toxic properties, which must be listed even when the given process unit is under the cut-off criterion of 1% of the total mass. Fly ash is used as a supplementary cementitious material and is regulated under RCRA & the Clean Water Act; no other hazardous substances are present. No known flows are deliberately excluded from this declaration; therefore, these criteria have been met. No biogenic carbon enters the product system. Carbon emissions during carbonation and calcination are also considered in this study. While no carbonation occurs during production of precast concrete, calcination occurs due to the use of cement. Calcination CO2 emissions for cement are calculated and reported separately using a carbon intensity factor for cement.


Quality Temporal and technological representativeness are considered to be high. Geographical representativeness is considered to be good. All relevant process steps for the product system were considered and modeled. The process chain is considered sufficiently complete with regards to the goal and scope of this study. The product system was checked for mass balance and completeness of the inventory. Capital equipment was excluded. Otherwise, no data were knowingly omitted. For more information on data quality, see the LCA background report

Flow diagrams

Manufacturing process for plants with batch facilities on site (all except Rosemount):

Cradle-to-gate precast concrete plant system boundary

Major assumptions and limitations: • Material input and transportation distances are averages and do not reflect

- changes in material efficiency and supplier locations. • Proxy materials were used when matching secondary data sets were not found.
- Generic data sets used for material inputs, transport, and waste processing are
- considered good quality, but actual impacts from material suppliers, transport carriers, and local waste processing may vary. • LCA results are relative expressions and do not predict impacts on category
- unit. Results listed in this EPD cannot be used to compare between products. • For an average EPD for a declared unit of 1 tonne of precast concrete, the

• This EPD covers only the cradle-to-gate impacts of products using a declared

endpoints, the exceeding of thresholds, safety margins or risks.

representativeness of the average EPD could be described by relevant technical properties such as those listed in the ACI 318 building code requirements for structural concrete.

Secondary data sets used

DATA SET	SOURCE	REF YEAR
eGRID – MRO, WECC, RFC	US EPA	2019
Cement, Portland {US} cement production, Portland Cut-off, U	ecoinvent v3	2022
Cement, CEM II/A-L {ZA} cement production, CEM II/A-L Cut-off, U	ecoinvent v3	2022
Sand (RoW) sand quarry operation, extraction from river bed Cut-off, U	ecoinvent v3	2017
Gravel, crushed (RoW) gravel production, crushed Cut-off, U	ecoinvent v3	2018
Rosin size, for paper production (RoW) rosin size production, for paper production Cut-off, U	ecoinvent v3	2018
Plasticiser, for concrete, based on sulfonated melamine formaldehyde {GLO}I plasticiser production, for concrete, based on sulfonated melamine formaldehyde Cut-off, U	ecoinvent v3	2015
Calcium nitrate {RoW} calcium nitrate production Cut-off, U	ecoinvent v3	2020
Polyethylene, high density, granulate {RoW} polyethylene production, high density, granulate Cut-off, U	ecoinvent v3	2018
Printing ink, rotogravure, without solvent, in 55% toluene solution state {RoW} printing ink production, rotogravure, product in 55% toluene solution state Cut-off, U	ecoinvent v3	2012
Steel, low-alloyed {RoW} steel production, electric, low-alloyed Cut-off, U	ecoinvent v3	2021
Steel, unalloyed {RoW} steel production, converter, unalloyed Cut-off, U	ecoinvent v3	2020
Metal working machine, unspecified (RoW)I metal working machine production, unspecified I Cut-off, U	ecoinvent v3	2013
Steel wire rod {GLO} blast furnace route and electric arc furnace route production mix, at plant 1kg LCI result	Industry data 2.0	2021
Carbon fiber/US	US-EI 2.2	2013
C3 hydrocarbon mixture {Europe without Switzerland}l C3 hydrocarbon production, mixture, petroleum refinery operation Cut-off, U	ecoinvent v3	2019
Reinforcing steel {RoW} reinforcing steel production Cut-off, U	ecoinvent v3	2020
Concrete, 40MPa {RoW}l concrete production, 40MPa, for civil engineering, with cement, Portland I Cut-off, U	ecoinvent v3	2022
Steel, chromium steel 18/8, hot rolled {RoW} steel production, chromium steel 18/8, hot rolled Cut-off, U	ecoinvent v3	2021
Shale brick (RoW)I shale brick production Cut-off, U	ecoinvent v3	2014
Polystyrene foam slab {RoW} polystyrene foam slab production Cut-off, U	ecoinvent v3	2022
Methylene diphenyl diisocyanate (RoW) market for methylene diphenyl diisocyanate Cut-off, U	ecoinvent v3	2022
Polyol (RoW)I market for polyol Cut-off, U	ecoinvent v3	2022
Pentane (RoW)I pentane production Cut-off, U	ecoinvent v3	2018
Acrylonitrile-butadiene-styrene copolymer {RoW} acrylonitrile-butadiene-styrene copolymer production Cut-off, U	ecoinvent v3	2022
Hydrochloric acid, without water, in 30% solution state {US} zirconium and hafnium tetrachloride production, from zircon Cut-off, U	ecoinvent v3	2022
Polypropylene, granulate {RoW} polypropylene production, granulate Cut-off, U	ecoinvent v3	2018
Injection moulding {RoW} injection moulding Cut-off, U	ecoinvent v3	2020
Polystyrene foam slab with graphite, 6% recycled {CH} polystyrene foam slab with graphite, 6% recycled Cut-off, U	ecoinvent v3	2016
Argon, crude, liquid {CA-QC} air separation, cryogenic Cut-off, U	ecoinvent v3	2020
Welding, gas, steel {RoW} welding, gas, steel Cut-off, U	ecoinvent v3	2022
Carbon dioxide, liquid (RoW) carbon dioxide production, liquid Cut-off, U	ecoinvent v3	2022
Diesel, burned in building machine {GLO} diesel, burned in building machine Cut-off, U	ecoinvent v3	2022
Gasoline, combusted in equipment NREL/US U	NREL	2008
Heat, district or industrial, other than natural gas {CA-QC} heat production, propane, at industrial furnace >100kW Cut-off, U	ecoinvent v3	2013
Nitrogen, liquid {RoW} air separation, cryogenic Cut-off, U	ecoinvent v3	2022

Major system boundary exclusions:

Cut-off, U

>100kW | Cut-off, U

• Capital goods & infrastructure; maintenance and operation of support equipment; • Manufacture & transport of packaging materials not associated with final product;

0

0

ecoinvent v3

ecoinvent v3 2022

2022

• Human labor and employee transport;

Oxygen, liquid {CA-QC} \mid air separation, cryogenic \mid

Heat, district or industrial, natural gas {CA-QC}| heat

production, natural gas, at industrial furnace low-NOx

• Building operational energy and water use not associated with final product.

Wells Structural Systems (multiple facilities): LCIA results, resource use, output and waste flows, and carbon emissions

Parameter	Unit	A1	A2	A3	Total
LCIA results (per 1,000 kg)					
Ozone depletion	kg CFC-11 eq	2.10E-06	2.85E-07	4.21E-07	2.81E-06
Global warming	kg CO ₂ eq	2.34E+02	1.24E+01	4.77E+01	2.94E+02
Smog	kg O ₃ eq	1.02E+01	2.18E-01	5.28E+00	1.57E+01
Acidification	kg SO ₂ eq	5.61E-01	1.32E-02	2.35E-01	8.10E-01
Eutrophication	kg N eq	8.53E-02	1.58E-03	1.21E-02	9.90E-02
Respiratory effects	kg PM _{2.5} eq	2.93E-05	7.19E-09	7.25E-08	2.93E-05
Carcinogenics	CTUh	1.97E-05	1.63E-06	1.35E-06	2.27E-05
Non-carcinogenics	CTUh	1.33E-01	3.63E-03	2.43E-02	1.61E-01
Additional environmental information			1	1	
Ecotoxicity	CTUe	3.81E+02	3.32E+01	1.78E+01	4.32E+02
Fossil fuel depletion	MJ surplus	1.12E+02	2.54E+01	8.58E+01	2.23E+02
Resource use indicators					
Renewable primary energy used as energy carrier (fuel)	MJ, NCV	5.66E+01	6.28E+01	9.17E+01	2.11E+02
Renewable primary resources with energy content used as material	MJ, NCV	1.12E+01	9.77E+00	7.53E-01	2.17E+01
Total use of renewable primary resources with energy content	MJ, NCV	6.78E+01	7.26E+01	9.25E+01	2.33E+02
Non-renewable primary resources used as an energy carrier (fuel)	MJ, NCV	1.68E+03	2.94E+04	7.17E+02	3.18E+04
Non-renewable primary resources with energy content used as naterial	MJ, NCV	1.54E-01	3.01E-03	8.57E-04	1.57E-01
Total use of non-renewable primary resources with energy content	MJ, NCV	1.68E+03	2.94E+04	7.17E+02	3.18E+04
Secondary materials	kg	0	0	0	0
Renewable secondary fuels	MJ, NCV	0	0	0	0
Non-renewable secondary fuels	MJ, NCV	0	0	0	0
Recovered energy	MJ, NCV	0	0	0	0
Use of net fresh water resources	m ³	2.55E+01	1.01E+00	3.07E+00	2.95E+01
Abiotic depletion potential for fossil resources (ADPfossil)	MJ, NCV	1.48E+03	1.64E+02	6.50E+02	2.29E+03
Output flows and waste category indicators			1	1	
Hazardous waste disposed	kg	0	0	0	0
Non-hazardous waste disposed	kg	0	0	3.97E+02	3.97E+02
High-level radioactive waste, conditioned, to final repository	kg	2.78E-02	2.66E-04	1.39E-02	4.19E-02
ntermediate- and low-level radioactive waste, conditioned, to final repository	kg	1.99E-05	2.34E-07	1.56E-06	2.17E-05
Components for re-use	kg	0	0	0	0
Materials for recycling	kg	0	0	4.62E+00	4.62E+00
Materials for energy recovery	kg	0	0	0	0
Exported energy	MJ, NCV	0	0	0	0
Carbon emissions and removals					1
Biogenic carbon removal from product	kg CO ₂	0	0	0	0
Biogenic carbon emission from product	kg CO ₂	0	0	0	0
Biogenic carbon removal from packaging	kg CO ₂	0	0	0	0
Biogenic carbon emission from packaging	kg CO ₂	0	0	0	0
Biogenic carbon emission from combustion of waste from renewable sources used in production processes	kg CO ₂	0	0	0	0
Calcination carbon emissions	kg CO ₂	6.46E+01	0	0	6.46E+01

kg CO₂

Carbonation carbon removals