

How to achieve net-zero with prefabrication.

Net-zero buildings play a crucial role in combatting climate change and preserving our planet for future generations, and one of the first steps to creating a net-zero structure is to utilize a high-performing building envelope. Wells building solutions are versatile and sustainable, aligning seamlessly with the goals of net-zero construction — even exceeding the criteria set by LEED.

Every wall becomes a barrier against energy waste.

Engineered for maximum thermal performance, insulated sandwich wall panels provide superior energy efficiency by minimizing heat transfer. Through the meticulous, quality-controlled fabrication process, insulation is securely placed and leaves no room for thermal bridging or energy loss.

Concrete's inherent thermal mass acts as a natural insulator, absorbing and releasing heat slowly, and maintaining a building's temperature year-round. High thermal mass drastically reduces the demand for large, energy-consuming HVAC systems, contributing to the structure's net-zero energy model.

Additional Wells building solution benefits for net-zero.

Longevity and durability.

Prefabricated concrete provides the longest service life of any building material due to its durable, low-maintenance surface and can stand up against the rigors of fire and natural disasters.

Local production.

Precast is typically produced within a 200-mile radius from the job site, reducing transportation emissions while supporting local economies. Materials are also sourced nearby, minimizing carbon impact.

Less waste.

Unlike traditional construction methods, prefabrication generates minimal job-site waste, promoting a cleaner and more efficient building process. Every component is precision-engineered for optimal performance, eliminating the need for excess materials.

Efficient concrete.

With the option to incorporate fly ash and repurposed materials, cement usage and carbon impact is reduced without compromising structural integrity.